LECTURE 6

BASIC IMAGE RECONSTRUCTION
Lecture Notes by Assaf Tal

K-SPACE: A MATHEMATICAL
DESCRIPTION OF SIGNAL
ENCODING IN MRI

The Time Evolution of the Magnetization
in the Presence of Gradients

We've previously seen that our acquired signal is

S(f)oc CUO Jbody B)E;[) (I)Mgm) (r’t)dv

with (omitting the 7ot superscript for simplicity):

.ot ’ ’ _L
Mxy (r; t) = Mxy(r, 0)e_lf0 Aw(r.t )dt e Tz

where Aw(r,t) is the offset of the spins (i.e. the
z-component of the effective field in the rotating
frame). Neglecting field imperfections for the time
being, and in the absence of RF irradiation, the
effective field in the rotating frame in the presence
of gradients is:

0

0 0
G(t) T —A‘”y(’)

Thus, Aw(r,t) = yG(t) - r. Substituting into My,

we obtain:

. t ’ ’ _L
Mxy(r’ t) = M, (r, 0)6_”'00 G(t")at )-re T

We now define a new variable, which will be of
great importance in future discussions (recall

y=2m):

t

k(t) = yf G(t"dt'
0

such that:

t
My, (1, t) = My, (7, 0)e 2mkOTe T,

We are going to assume we excite our spins from
thermal equilibrium onto the x-axis of the
transverse plane. At thermal equilibrium, the
magnetization at each point is simply given by
Mo(r), meaning

M, (r,0) = My(r)

Finally, we are going to assume we acquire our
signal over timescales which are much shorter than
T, of water, so t < T,~50 — 100 ms. Under these
assumptions:

s(t) « M,y (r)e2mk®T gy
body

As you see, the signal does not explicitly depend on
time, but rather on k (which depends on time). We
will therefore write:

M, (r)e —Zm‘k(t)-rdr
body

s(k(t)) = (k) «

The MRI Signal Is Acquired In The
Fourier Space ("k-Space") Of The Image

Once we neglect T, the signal depends only on k(t),
which we can control by varying the gradient G(t).
Thus, we can think of §(k) as being acquired in
some 3D k-space.

Given  My(r), it is  computationally
straightforward to compute §(k), and a sample
calculation is shown below:

M, (1) $(k)

Image space k-space

The question we would like to pose is the opposite:
given §(k), can we recover My(r)? The answer is
yes, and is related to perhaps the most famous
transform in mathematics, the Fourier transform.



k-Space and Image Space Are Related Via

A Continuous Fourier Transform

Given a function g(r), we can define its
continuous Fourier transform (CFT) §(k), which
is another function, as:

gk) Ef g(r)e 2mkrdy

(this is a 3D integral over all of space)

This is just a definition. However, it is now possible
to prove that, if we know (k) at each value of k,
we can use that to completely recover g(r), using
the inverse continuous Fourier transform (ICFT):

goo=(%9312mkw“*nw

There are multiple proofs of this well-known and
non-trivial theorem, and while not difficult we will
not present any here since we are not interested in
the mathematical foundations of signal processing.
Instead, we will just use it for our purposes. This
theorem has a one-dimensional analogue':

(k) = foos(x)e_z"“"‘dx (CFT)

[ee)

kS(X) = %f $(k)e*?™kxdyx  (ICFT)

If we make the correspondence s(x) = My(x),
then we immediately see that the acquired signal
8(k) is the CFT of the image My(x) (and, in 3D,
8(k) is the CFT of My (1)):

M, (1) $(k)

Image space k-space

! The signs and 1/2n factors differ between different
textbooks and papers. This is a consequence of the
Fourier transform theorem: one only needs the signs in
the exponential in the CFT and ICFT to be opposite.
Similarly, one needs the factors of the integrals to equal

Note: since the CFT and ICFT definitions are so
similar, authors often switch between the CFT and
ICFT, and might call our ICFT a CFT. There really
is very little difference apart from a scaling factor
(1/2m) and flipping the resulting transform (which
has —k instead of k in the exponent). Our particular
choice of names stems from trying to mimic as
closely as possible the way the popular academic
programming language MATLAB handles Fourier
transforms.

We have already introduced the concept of a
Fourier transform in the previous lecture as a
“magical box” that can detect and tell apart
frequency components in the signal. For example, if
we take the function

f(t) = cos(2mv,t) + 2 - cos(2mv,t) + 3
- cos(2mv,t)

0 0.1 0.2 0.3 0.4 0.5
Sec

with v; = 10 Hz, v, = 17 Hz, v3 = 37 Hz, then
its Fourier transform,

ﬂw=[ F(De 2 dt

will look like this:

i , so in some books both the CFT and ICFT have a

—L_ factor in front of them, and in some books the CFT

2z

has the ﬁ factor in front of it.
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How does it work? If you look at the value of the
Fourier transform at a given frequency — say, Vv —
then it is given by taking a plane way, e ™2™Vt
multiplying it by the function f(t), and summing
across time. If f(t) is another plane wave with a
frequency that is not V, then the two plane waves
will interfere destructively, yield another plane
wave, with an average area of zero (it will have

negative and positive lobes which cancel out):

Re (e—Zm'Vte —Znivt)
VFEV

However, if the frequencies are equal — that is, if you
look at the value of f(v) at the frequency v, and
that frequency happens to coincide with the
frequency of the plane wave f(t) — the two plane
waves will completely cancel out and the remaining
constant function will have a non-zero total area:

Re (e—Zm'Vte —2m'vt)
V=V

Sec

If £(t) has several frequency components — i.e., it is
the sum of several terms with different frequencies
— then its Fourier transform f (v) will become non-
zero and you will obtain a peak whenever v
coincides with one of the frequencies in the signal

f(v).
SAMPLING K-SPACE

We Can "Take A Walk" In k-Space By
Varying The Gradient

We manipulate k(t) by changing the gradient.
According to its definition,

k(r)=#,G(r")d",

it is equal (per-component) to the total area
underneath the gradient. In 1D, for example:
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Of course, a realistic gradient would need non-zero
ramp up and down times:
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Since we can apply negative gradient values we can
also “rewind” k back to the origin:
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As another example, consider the following 2D
gradient waveform function:

Gx(t):Go'
G,(r)=G,-

. COS((()gf)

N~

. cos(a)gt)

N~

with T =5 ms, Go=5 mT/mand o, =2n-2 Hz. We
can find k(t) easily by integrating:

t

/engaj G

0

ky :44.‘-0 Gy (f')ﬂlt'

(¢')drt'

X

We will not actually carry out the integration
analytically as it is not particularly interesting.
Instead, I've used a plotting software package to plot
both G, Gy and ki, k; as a function of time:
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We can think of k() as tracing a "path” in the ke-ky
plane, by plotting it parametrically (that is, plotting
the position of the vector k(t) as a function of the
variable £):

k, (m™)

In effect, we are sampling data along the this
trajectory in k-space (that is, we are measuring s(k)
along the trajectory).

Our Sampling Of k-Space Is Limited by
Both The Total (1) Acquisition Time And
(2) Sampling Rate

Although 8(k) and My(7) are related via a CFT,
and although My (r) can be recovered from $(k)
completely by carrying out an ICFT, we are faced
with a problem: We cannot measure §(k) at every
point in k-space, but only along the “trajectory” of
kin k-space. It should be quite clear to the reader at
this point that traversing k-space by varying the
gradients takes time, and that we do not have



infinite  acquisition  time, seeing as the
magnetization decays in the xy-plane with a time
constant T». Hence, the extent to which we can
cover k-space is limited.

There is another factor limiting our coverage of
k-space, which is the sampling rate of the analog to
digital converter (ADC). The ADC samples at a
constant rate in time steps At called the dwell time.
Thus we do not measure data along a continuous k
variable but only at discrete points, i.e. a discrete
trajectory. In the spiral trajectory we’ve seen above,
we would actually only sample §(k) on a non-
rectilinear grid:

Phase and Frequency Encoding Are Often
Combined To Read Out A Cartesian Data
Set In k-Space

We have previously outlined a 2D pulse sequence
which combines phase and frequency encoding, but
have not delved into its workings. We will take a
closer look at it now, with a small modification: we
will insert a rewinder gradient before the readout
gradient, for a reason that will become clear in a
moment:
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The above sequence is repeated multiple times, each
time incrementing the phase encoding gradient
from some initial negative value to some final
positive value. A particular scan and its
corresponding dataset in k-space would look like

this:

Start here after
excitation .,

Readout rewinder and

phase encoding Acquisition happens

gradients shift us along along this line along a
ks, ky respectively discrete set of points
(red dots)

Thus the purpose of the rewinder gradient is to shift
us back along the readout axis (k,) so we read out
data symmetrically in k-space.

Repeating the sequence multiple times, varying
the phase encoding gradient each time, yields a 2D
data set of values of s(k) sampled on a cartesian grid
of k points. Each line in k-space will result from an
excitation-rewinding-acquisition block:

ky

Scan N

Scan 2
Scan 1

To summarize:

Data §(k) in MRI is acquired in k-space by
varying the gradient as a function of time. The
data is proportional to the continuous Fourier
transform of the image we wish to reconstruct,
sampled on a discrete (although not necessarily
rectilinear) grid of points.




In the next section we will examine the problem of
reconstructing the image f(r) from this discrete
sampled dataset, assuming the grid is rectilinear.

THE DISCRETE FOURIER
TRANSFORM

Discrete Sampling Leads To Aliasing,

Blurring and Ringing

In the remainder of this lecture we will concern

ourselves with two questions:

1. How do we reconstruct our image from the
discretely sampled data?

2. What effect will this have on the image? That
is, how will our reconstructed image compare
to the “true” image f(r)?

The answers to these two questions will be:

1. Reconstruction takes place via a Discrete
Fourier Transform (DFT).

2. The sampling will yield an image that is
obtained by convolving the true image with a
point spread function and sampling it on a
discrete grid. The convolution will lead to three
effect:

a. Blurring. the reconstructed image will
look like a blurred version of My (r). This
will be a result of the limited extent of
measurement in k-space — that is, the
maximal value of k we will sample.

b. Aliasing. Copies of the original image will
appear if the spacing between the acquired
points in k-space is not kept small enough.

c.  Ringing. Sharp edges in the original image
will appear to “ring”, namely, create small
“waves” around them. This will be an
unavoidable feature which will grow less
substantial as the number of points
increases.

Graphically:

Image space

® PSF

(f ®PSF)(r)

Reconstructed

Sampled k-space

[mage data

Statement Of The Problem

Let us confine ourselves to a one dimensional
problem. Given an “image” s(x) = My(x), we
form its continuous Fourier transform:

(3] =f My (x)e=2mkx dx

We sample §(k) on a discrete grid of N points,
starting from some initial value —kmu/2 and
advancing in steps Ak=kmu/N:

k
ky=— ’;‘”+n-Ak

n=01,..,N-1

If the readout gradient is constant in magnitude, the
interval Ak is determined by the gradient
strength, G, and the ADC dwell time, At:

Ak = ¥GAt
NAk = Kypgy

However, it will not matter to us how the points in
k-space were sampled, only that they were sampled.

The N points 4, in this particular sampling
pattern are not symmetrically placed around 0:
there is a last point missing at kua./2. However, if



you think in terms of intervals, it is symmetrically
placed. Here is an example with N=10:

Ak
S
n: 01234567389
—e oo oo $p oo oo ——>
k: _f(‘im 0 A — Ak
N _
YT
kmax

We now pose the question: given the set §, =
3(k,), how do we recover My(x)? It would be
instructive to take a particular example. Suppose
our “image” My(x) is an uninteresting boxcar:

L
Mo(x) = {1 =3
0 elsewhere

It is actually feasible to compute its CFT
analytically:

$(k) =f My (x)e=2mkx dx
T

2 .
— f e~ 2mikx
_L
2

L

e—Zm'kx 2

~ 2mik L
Znikg _2mikL

()

~ Tk 2i
sin(mkL) .
=L —— =L -sinc(mwkL)
kL

sin(x)

x

and

where we have used sinc(x)z

sin(x) =25

—ix

. The two functions are plotted next

to each other below:

Mo(x) 3(k)

R=Ri
Bl

This highlights a general feature of Fourier

transforms, namely that the width of the function

in one domain is approximately equal to the inverse
of its transform in the Fourier domain.

Due to our discrete sampling, we only know the
values of §(k) on our discretely sampled grid:

3(k) Sampled data

Sample in this
range

We hope that, if we sample “enough” points, we
should be able to approximate the continuous
Fourier integral by a discrete sum. This motivates us
to define the discrete Fourier transform and its
inverse:

Given a discrete set of (possibly complex) points
So,S1, -+-» Sy—1, we define their discrete Fourier
transform (DFT) as the set of points

a

So, Sl' ey SN—l:

2minm

YnZosne” M (DFT)

Then it is possible to prove that, given
S0, 81, -+» Sn_1, the numbers Sy, Sy, ..., Sy_1 can
be recovered by computing the inverse discrete
Fourier transform:

2minm
Yhhsme 8 (IDFT)

Compare this to the CFT and its inverse!

The Point Spread Function Of Cartesian
Sampling Is The “Dirichlet Kernel”

We would fike to carry out an ICFT of the full k-
space data, §(k), and, instead, we're going to carry

out an IDFT of the pardal, discrete data §,, =
$(ky):

2minm

s, = %Z;vn—:% $pe N n=01,..,N—1)

We are going to hope the computed values
Sgy ) Sy—1 ate going to recover our image My (x).



In what follows we’re going to carry out an ugly
calculation — you can skip it if you’d like and just
jump down to the final expression.

Let’s follow this rabbit down the rabbit hole and
see where it leads us. First, we note that the k-space
data is given by

) =f M,y (x)e 2™k dx

and therefore our sampled data points at k,, =

kmax

+ m - Ak are given by:

§m = §(°]§m)
=f My (x)e~2mikm* dx

— emkmaxxf Mo(x)e—meAkxdx

form=20,1,..,N
and interchange of the summation and integration

— 1. We get, upon substitution

signs:
N-
1 Z men
N
m:
N-1
”"'kmaxx . 2mwimn
f MO(X) ZE_meAkxe N dx
m=0

We are going to simplify this by combining the

exponents inside the summation (since e'e®=e*):

m'kmaxx N-1 imAk n

f Mo(x) Z e—2mm (x——NAk) dx
m=0

We can write

. . _.n iTkmaxn
eiMkmax* — emkmax(x NAk)e NAk

= gimng i”kmax(x _NLAk)

(_1)nei”kmax(x_ﬁ)

because e = cos(mn) + tsin(mwn) = (—1)™.
Putting this back, we see that we can write s, as

= (1" f_w My (x)PSF <x _ k" )dx

with

=

-1
PSF(x) = ekmaxx e ~2mimAkx

0

3
I

The only thing we need to do is carry out the
summation. We can do this by noting that, in

general,
e = (e*)Y
SO
e—Zm'mAkx — (e—Zm'Akx)m = g™
with

a=e —2miAkx

This just means the summation is the sum of a
geometric series (you can find this in Wikipedia if
you don’t know how to derive it):

Plugging in our expression for 2 and simplifying, we
obtain:

Sin(7wk g, %)

PSF — pimlAkx
() =e sin(mAkx)

Kmax = N - Ak

This is known as the Dirichlet kernel. We plot it

and note some crucial features:

PSF(x) (Real part)

FOV=1/AK

Lobe width
AX— I/krmx

PSF(x) (Imaginary part)
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It is periodic with a period 1/Ak, and its lobes have
a width approximately given by 1/kmu=1/(NAKk),
i.e. N times smaller than its periodicity. We define
two quantities known as the Field Of View (FOV)

and spatial resolution (Ax):

Fov =
T Ak
1 1 Fov

Ax = = =
ke N-Dk N

The Point Spread Function “Scans” The
Image From —FOV/2 To FOV/2, In Steps
Of Ax

To visualize the imaging process, I've plotted the
boxcar function Mo(x) with a width of unity, and
have chosen the following sampling parameters:
FOV = 2, N = 16 so Ax=0.125 and Ak=0.5. Since
N=16, we have 16 k-space samples $¢, 81, ..., 515
from which we construct 16 image coefficients
S0, S1, ) S15. The j* coefficient is obtained by
multiplying the true distribution of spins, f(x), by
PSF(x —n-Ax), where Ax =1/kpqy, and
integrating (i.e. calculating the area). This is shown
in the following diagram:

i Sl ‘/\Af\

e e MA

i i Ss

: J—

i i S15
— PSF(x-ndx) PSF(x-n4x)-Mo(x)
— Mo(x)

We see that the PSF “moves” in small steps of Ax.
When the main lobe moves outside the spin
distribution the area becomes negligible, and when
it moves back in the signal grows back up. If we
actually calculate s; and plot the result, we obtain:

This looks like a “mirrored” version of My(x) about
x=0. This mirroring is the result of the PSF starting
from the center of the image at n=0 and not from



the far left edge. This implies that we need to
“switch” the right and left parts of the image, which
yields:

(] . d L ‘ ! ! ! *

0*2e4 6 8 10 12e14°

This is not a perfect image of the boxcar function
but it’s not too bad. Here are the coefficients s
when we increase N to 32, and then 64 (shown on
the left) and the corresponding changes to the PSF
on the right:
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Aliasing Is Caused When The Steps In
k-Space Are Not Small Enough

The Dirichlet kernel has a periodic structure with
periodicity given by the Field of View:

1
PSF(x + FOV) = PSF (x + E) = PSF(x)

If the FOV is smaller than the imaged object then
we will get aliasing. This describes a phenomena in
which the distance between adjacent lobes, given by
the FOV, becomes smaller than the object. Thus, as
the PSF “scans” the object, non-central lobes will re-
enter the image, effectively causing multiple copies
of the object to appear in the reconstructed image.
This has a very classic appearance in MRI, in which
one side of the image “wraps” into the opposite side:

< FOV > +«—TFOV—>

Aliasing is removed by keeping the FOV larger than
the object:

To avoid aliasing, keep FOV=1/Ak bigger than
the object’s dimensions, where Ak = ¥GAt, G
is the gradient strength, and At is the dwell

time.

This is illustrated in the following diagram, showing
an object (f(x), two boxcars) of size 3 arbitrary units,
and a point spread function with FOV = 4.0, 3.0
and 2.0. In the last case aliasing will occur (N=64).

——  PSF(x)
——  f(x) (“True” image) Image

1

Reconstructed




Another Way To Understanding Aliasing
Aliasing can also be understood from a different
perspective: we are sampling the image in k-space,
which is its Fourier space. This space represents the
frequencies of the object. Once we only consider
discrete frequencies in jumps of Ak, we lose the
ability to tell apart positions x and x+1/Ak, as shown
in the following diagram, in which Ak=1 (in
arbitrary units) and cos(2mxok) and its sampled
version are both plotted for xo=0, 0.1, 0.5 and 1.0,
showing that, for xo=0 and 1, the set of sampled
points coincides and the two positions cannot be
discerned:

cos(2mxok): x0=0

Blurring Occurs When We Don’t Go Far
Enough In k-Space

The width of the Dirichlet kernel’s main lobe sets
the resolution of the image. Any point image
&(x — x,) will be replaced by the PSF, centered at

X0

§(x —xo) = [ 8(x" — xo)PSF (x — x")dx’
= PSF(x — x;)

=

1.0 0.5 0.0 0.5 1.0 -1.0
True image

~0s T
Recon. image

This means features will get “broadened” by the
PSF’s lobe’s main width, which is approximately

+— . This determines our real spatial resolution.

max

The same effect can be seen in 2D and 3D cartesian
sampling schemes as well. For example, in 2D

(FOV,=FOV,=256 mm, N,=N,=64):

Main lobe
width 1/Kpnax

=

Point source (real part of) image
When the image is comprised of many point
sources, as is the case with real images, each point
will get broadened which is perceived as blurring;

Mo (X)

Recon. Image

To reduce blurring, keep Ax=1/km. as small as
possible, by going “far out” in k-space.

Of course, how far we can go out in k-space will
depend on how long we have to sample and how
strong our gradients are.

Another Way to Understand Blurring

Blurring can also be understood as follows: if we
could sample all of k-space we could reconstruct our
source image perfectly with an inverse continuous
Fourier transform:

f(x) = ICFT[s(k)]



Putting aside for a moment the question of the
discreteness of sampling, we look at the effect of the
finiteness of our sampling extend. We're basically

sampling s(k) only in some interval [—kT,kTJ

This is the same as fully sampling s(k) times a
windowing function W(k), which is equal to 1 in

b & . .
ke [— e ,&J and 0 outside the interval. What

2 2

would we get if we were to apply an ICFT to that?
ICFT[s(k)-W (k) ]=2

Fortunately, a well known theorem from Fourier
theory? called the Convolution Theorem states that
the Fourier of the product equals the convolution of
the Fouriers. That is:

ICFT[s(k) - W (k)]
= ICFT[s(k)IQICFT[W (k)]

We already know that f(x) = ICFT[s(k)], and
we've also shown that the Fourier transform of a
boxcar function W(k) of width k. is a sinc of
width - 1/kma. Thus,

ICFT[s(k) - W (k)]
= (image)® (sinc of width ! )

This in essence restates our previous result: features
will get “broadened” by the sinc function’s main

width, which is approximately 7.

The “Wiggles” in the PSF Lead to
“Ringing” in The Reconstructed Image

The wiggly edges of the PSF are responsible for an
artifact often referred to as Gibbs ringing, observed

as “wiggles” upon transitioning from one intensity
sharply to another:

2 1t’s not difficult to prove. You should try it if you feel
comfortable with the math (you don’t need to prove it to
use it, though!).

Since the wiggles in the PSF become smaller as
N—oo while keeping the FOV fixed, one way to
reduce it (but not completely eliminate it) is to
simply take more points. However, some wiggles
will remain even for large N, and any sharp
edges/transitions in Mo(r) will result in Gibbs
ringing even in very high resolution images.

Why The Nominal Resolution Tells Only
“Half The Story”

Suppose we image in one dimension with the
following parameters: FOV = 10 mm and N=10,
meaning  our  nominal  resolution s
Ax=FOV/N=1 mm. However, the PSF is not a
perfect boxcar with a width of 1 mm. Rather, there
is no unique way to define the “resolution” of the
PSF, only to say it is approximately 1/kma. Some
parameters of the main lobe are shown below:

. 2/ kmax

/N /\

7 i ; N
U 2 2/kmax 3 :\/

So the width at the base is actually twice the

nominal resolution (Ax), and even the width at half
the maximal amplitude is approximately 1.2-Ax. It
is best to keep in mind these two figures of merit
and not the nominal resolution itself, although
almost all published papers do not mention the PSF
at all and quote solely the nominal resolution. Still,
it is quite easy to visualize the true form of the PSF
given the nominal resolution, at least for cartesian
sampling.



Sampling k-Space By Reading It Line-By-
Line With A Gradient Produces
“Gradient Echoes”

We've presented the very basic imaging sequence in
the previous two lectures,
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in which a line is acquired in k-space during each
excitation:

smﬁ.—. I
F

Scan 3
Scan 2

Scan 1

This must be repeated for each excited slice. Let us
put aside for the time being the total time required
for such a measurement and assume our
magnetization is in thermal equilibrium before the
start of each k-space line.

Neglecting for a moment the decay of signal due
to T; and T,* effects, the signal as a function of k is:

s(kt)=sk :/ M, 7 e 27k t gy
body

Recall that measurement doesn’t start at t=0 but at
some time 7=to when the ADC opens up. At that
point, k doesn’t start from 0 but from some initial
value ko=k(to), which is the point to which the phase

and rewinder gradients take us:

ky At t=0 (k=0) we are
Rewinder and phase at the center of the
encoding  gradients excication pulse

take us to k(to)=ko

Kinax/2
— _
~
ADC

The maximal signal comes from the center of k-
space and the lines k=0 and k,=0. This can be seen
by in several ways. First, just by looking at typical k-
space data:

Image space k-space

Mathematically, using the fact that
U f(x)dx SJ. |f(x)|dx for any function f(x),

we have:

s(k)z

<

J.all Mo (r)efzmk(z)-rdr

space

MO (t)e—Zm'k(t)»r dr

all
space

=\ |M0 (r)|dr = 5(0)

space

From an intuitive point of view, what we’re doing
is integrating a function Mo(r) and modulating it by

. . . 27k
some sinusoid function e”™". The faster we
modulate it, the more it integrates to zero since the

positive and negative lobes cancel each other out,
assuming ¢”™*" varies spatially faster than the

image:



General function f(x)

Lof

Fast varying sinusoid

Fast negative-
positive lobes
cancel each
other out when
integrating

This is why we call this sequence a gradient echo:
the spins are first dephased by taking them to the
outskirts of k-space. When we cross the k=0 line all
of a sudden we get a large amplitude, a so-called
gradient echo, which then decays back again as we
travel to the other side of k-space. We've seen this
mental picture before when discussing the
dephasing effect of gradients. If we think of a one
dimensional imaging problem and a uniform spatial
distribution of spins of size L, the analytical
acquired signal is:

s(/e) = Iw M, (x)ez”ikxdx ~ sinc(ﬂkL)

and this is what happens to the spins in the sample
after getting excited and “rewound”:

—

Start of ADC Center of ADC  End of ADC
k=-Kkmax/2 k=0 k=kmax/2



