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LECTURE 3

SPIN DYNAMICS
Lecture Notes by Assaf Tal

This lecture will begin by exploring the dynamics of
single, uncoupled magnetic moments in a vacuum.
We will explain how they interact with magnetic
fields, and then expand our description to include
macroscopic spin distributions.

THE MAGNETIC MOMENT: THE
"BASIC UNIT' OF MAGNETISM

The Magnetic Dipole/Moment

Before talking about magnetic resonance, we need
to recount a few basic facts about magnetism.
Electrodynamics is the field of study that deals
with magnetic fields (B) and electric fields (E), and
their interactions with matter. The basic entity that
creates electric fields is the electric charge. For
example, the electron has a charge, q, and it creates
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an electric field about it, E = r% f, whereris

a vector extending from the electron to the point of
observation. The electric field, in turn, can act on
another electron or charged particle by applying a
force F=qE.

N

Left: a (stationary) electric charge g will create a radial
electric field about it. Right: a charge ¢ in an electric field
will experience a force F=qE.

There is, however, no such thing as magnetic
charge. The “elementary unit of magnetism” is the
magnetic moment, also called the magnetic dipole.

! Magnetic fields are measured in Tesla (T) in the SI
system of units. Other systems use the Gauss (G). The
conversion is straightforward: 1 T = 10 G

It is more complicated than charge because it is a

vector, meaning it has both magnitude and

direction. We will ask ourselves two basic questions:

1. What sort of magnetic fields does a magnetic
moment create?

2. How does an external magnetic field affect the
magnetic moment (apply force/torque, etc)?

We begin by answering the first question:
Mathematically, if we have a magnetic moment m
at the origin, and if r is a vector pointing from the
origin to the point of observation, then it will give

off a dipolar field described by:

Uo 3(m - F)F —m
B(r)=——~—~— -
) 4m r3

The magnetic field can be visualized using a stream
plot, which plots the field lines (to which B is
parallel) at each point in space. These resemble in
shape of an apple’s core. These are sample field lines
in the x-z plane (at y=0):
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The field lines have cylindrical symmetry; i.e., they
look the same through any plane which contains the
z-axis at its center. The magnetic field is measured

in units of Tesla (T) or Gauss (G) (1 T=10*G).

Number Time. The earth’s magnetic field is
about 0.5 G = 0.5-10“T. Clinical MRI scanners
operate at 1.5 T — 3.0 T, and the highest human
MRI scanner as of early 2015 is the 11.75 Tesla
human magnet being built in the University of
Freiburg, Germany.

The magnitude of the generated magnetic field B is
proportional to the size of the magnetic charge'.



The direction of the magnetic moment determines
the direction of the field lines. For example, if we
tilt the moment, we tilt the lines with it:
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The simplest example of a magnetic moment is the
refrigerator magnet. We’'ll soon meet other, much
smaller and weaker magnetic moments, when we
discuss the atomic nucleus.

Your refrigerator magnet
has a permanent magnetic moment

Indeed, if you take such a piece of magnetized iron
and place iron filings around it, the filings will align
themselves along the field lines, illustrating them
visually:

This also introduces the idea that “magnetic
materials will align themselves” along the magnetic
field they’re in, but we're running ahead of ourselves
here.

Another interesting example is the Earth itself,
which behaves as if it had a giant magnetic moment
stuck in its core, likely due to the presence of
magnetized iron in its core:

North geographic South magnetic
pole < ; / pole

Compass

/ N\
North magnetic - ~ South geographic
pole pole
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Magnetic moments are measured in units of
Joule/Tesla or (equivalently) in Ampere-meter® (1

J/T=1Am?.

Number Time. A typical refrigerator magnet
might have a macroscopic magnetic moment of
about 0.1 J/T. The tiny proton has an intrinsic

magnetic moment equal to about 1.4-10% J/T.




Magnetic Moments Are either Intrinsic or
Induced

Magnetic moments are divided into two groups:
current-induced and intrinsic.

Induced Moments: Basic electromagnetism tells us
that a current flowing in a closed loop will give off
a magnetic field. The loop can be macroscopic, like a
wire, or microscopic, like an electron orbiting the
nucleus. Far away from the current loop the field
will look as if it were being generated by a magnetic
dipole. If the magnetic loop is assumed to be planar,
the magnetic dipole will be perpendicular to the
loop, and have a magnitude given by

m=[-A,

where [ is the current in the loop and A is the area

enclosed by the loop:

For a general (non-planar) current loop, the
expression for m is somewhat more complicated,
but the principle is the same.

Number Time. Classically, an electron orbis the
nucleus at about the Bohr radius (r = 1A ~
10~°m) with a velocity equal to about the fine
structure constant times the speed of light:
v~c/137~2-10° m/sec and angular frequency

2mv
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Thus, its “effective current” is

_AC_ e
AT 2m/w

I ~ 0.003 A

The associated magnetic moment is:
m = Al = nr?*] = 107%2A - m?

Let’s calculate the magnetic field created by this
moment at the position of the electron itself:

Ko 3m
4 13

|B| =

~30T.

This is an absolutely enormous magnetic field,
much stronger than the ones employed in MRI!
Although such effects are important in atomic
physics, the orbital angular momentum of the
electron is actually zero for most molecules and
solids. This is due to an effect called quenching
of the orbital angular momentum, where, due
to reasons of symmetry in quantum mechanics
— which we won’t go into — the orbital angular
momentum is forced to be zero (or almost zero).

Intrinsic Moments: [t also appears that the
fundamental particles — the proton, neutron and
electron — carry intrinsic magnetic moments. That
is, they “give off” a magnetic field as if a magnetic
dipole were fixed to them, without having any
current associated with them.

The angular momentum of elementary particles
is measured in units of a fundamental constant
known as Planck’s constant (divided by 2m),

h~1.05x10"" J-sec.



Electron Neutron Proton

Charge -1.6x10" 0 1.6x10"
(Coulombs)

Mass (kg) 9.1x107! 1.6x10% 1.6x10%
Magnetic 9.26x10%* | -0.96x10%¢ | 1.4x102
moment

/1), 2myS

Magnetic -1.0 Irrelevant Irrelevant
moment (L)

Magnetic Irrelevant -1.91 2.79
moment (UN)

Spin, S (in 1/2 1/2 1/2
units of h)

Gyromagneti 2.8-101 -2.91x107 | 4.257x107
¢ ratio, Yy

(rad-Hz/T)

The Bohr magneton, ps, is just a quantity that
makes it easy to talk about electron magnetism. It’s
not used often in nuclear magnetism, though:

eh J
=—=927x10"2* —
o 2m, T

A similar quantity, the nuclear magneton, p, is
used more often in nuclear magnetism, although we
won’t be making direct use of it in these lecture
notes:

eh ]
= —=505x10"% %
o= om, T

The phenomenon of intrinsic magnetic moments is
directly related to another fundamental property of
these particles called spin, and one speaks of a
"nuclear spin" or an "electron spin". This is intrinsic
angular momentum possessed by all electrons,
protons and neutrons. Semi-classically, we can
think of the proton or electron as a rotating ball of
charge. The rotating charge can be thought of as
loops of current, which give off a magnetic moment.
In reality this picture is wrong, and you should
always keep in mind spin is an intrinsic, somewhat
weird quantum mechanical property; for example,
the neutron has no charge and yet has a spin
magnetic moment.

The semi-classical picture gets one thing right:
the angular momentum and magnetic moment of
the spinning sphere are parallel:

m=YS.

The constant of proportionality is known as the
gyromagnetic ratio, and is given in units of

Coulomb _ Hz

1= kg  Tesla

A word of caution about units: some books or tables
quote y in units of rad-MHz/T. For example,
y=21-42.576 rad-MHz/T for the hydrogen nucleus.
Always be mindful of the units being used.
Remember that, if we multiply y by 2m, we will
sometimes need to divide another quantity by 2n
along the way. A simple example is that of the
magnetic moment of the proton:

m= 14 X S
o] h (o]
42.576 M;IZ =(7> for proton
(no 2m) (has 2m)
Equivalently,
m= 4 X S
“ A (]
2m-42.576 % =(E) for proton
(has 2m) (no 2m)

In the second form, I moved the 27 factor from h
to y. The end result is the same, but now we must
remember to specify the angular momentum in
units without radians.

All electrons have an intrinsic magnetic
moment, but that is not true for all nuclei, as we will
see in the next section.

The Nuclear Magnetic Moment Is
Determined by  the
Composition (Protons + Neutrons)

Nucleus’s

The nucleus is made up of protons and neutrons.
The chemical name of an atom — carbon, hydrogen,
phosphorous and so on — is determined by the
number of protons it has. This will ultimately
determine how many electrons it has and, therefore,
its “chemistry”. However, since neutrons are
electrically neutral, their number might vary
without changing the atom’s “chemistry”. Two
such atoms are called isotopes. For example, shown
here are two isotopes of carbon:



® Neutron @ Proton

@ Electron

Two cartoon representations of '*C (left), which
has no nuclear spin, and *C (right), which has a
nuclear spin of 1/2.

Proton and neutron spins tend to pair up anti-
parallel due to the Pauli exclusion principle, in a
manner similar to that of the electronic model of the
atom, where levels fill up from lowest energy and
up. This is quite surprising when you consider how
strongly coupled the nucleons are, but it works.
This reasoning works fairly well. For example, it
predicts that nuclei with an equal number of
protons and neutrons should have 0 nuclear spin.
This works well for >C, '°O, but not for ?H, as
shown by the next table:

Number of Number of Spin quantum Examples
protons neutrons number
Even Even 0 2@ il6n 220
0dd Even 12 Iy, 19 31p
A - 32 HpeicEiny
Even 0dd 12 L/
" i 312 1271

512 7o
0dd 0dd 1 24, “N

It also predicts nuclei with an “extra” neutron or
proton should have spin-%2. This works for *C, 'H,
P, YF, but not for 7O. The breakdown of the
pairing occurs before some nuclei have asymmetric
nuclear charge distributions. These lead in some
cases to favorable energy configurations with non-
paired nucleons. Nuclei with spin>% have
asymmetric nuclear charge distribution and are
known as quadrupolar nuclei, which interacts with
the nuclear magnetic dipole and makes life very
complicated. We won’t discuss quadrupolar nuclei
in this course.

2 Carbon has other isotopes but they do not occur
naturally in nature and have zero natural abundance.

Nuclei with Low Natural Abundance
Have “Low MRI Visibility”

It is very important to take into account the natural
abundance of each isotope in determining how
large its signal will be. The natural abundance tells
us if we take N atoms of an element then, on
average, what percentage of each isotope we will get.

Nuclei with low or very low natural abundance
will be difficult to detect, simply because there are
very few such nulei around. For example, ’C has a
natural abundance of about 1% and "C has a
natural abundance of about® 99%. In a sample
containing 100 carbon atoms, only about 1 will be
a C nucleus and the rest will be '*C. Since only °C
has a nuclear spin it will be the only one giving off
a signal. In biological tissue, only about 1 in 100
carbons will give off a detectable MRI signal.

Natural abundance should also be kept in mind
on the molecular level. Molecules are made out of
atoms, connected between them by chemical bonds.
The most important molecule in MRI is without a
doubt water:

H/ O \H

A “typical” water molecule actually comes in many
isotopic flavors. Here are two examples:

160 1701
1HT 1H1 ZHT th
Two isotopes of H2O. The left is the most commonly
found in nature. The one on the right is much rarer.

On the left is the most common variant by far.
Oxygen-16 has no spin (its 8 protons pair up
destructively, as do its 8 neutrons), and 'H has spin
1. Because of symmetry, the two hydrogen atoms
are equivalent, in the sense that they behave as one
spin-1/2 entity with double the magnetic moment.
The variant on the right is very rare, and has
markedly different NMR properties ('’O has spin
5/2, and Deuterium has spin 1). Deviations from
the “regular” H,O are so rare, that their



contribution to any experiment are negligible, as
shown in the following table. Natural abundances
are calculated by muldplying the natural
abundances of the individual components
(assuming statistical independence, which is an
excellent assumption):

Oxygen | Hydrogen | Hydrogen | Nat. Ab. (%)
0O 'H 'H 99.74
) 'H ’H 9.97-107
10 *H 'H 9.97-107
©) *H ’H 9.98-107
70 'H 'H 3.99-107
'O 'H H 3.99-10°
70 *H 'H 3.99-10°
170 ZH ZH 4.10.10
©) 'H 'H 1.99-10"
50 'H ’H 1.99-10°
50 *H 'H 1.99-10°
180 ZH ZH 2.10.9

Thus, when we speak of water we're really
neglecting all isotopic variants except for

1O-'H-'H.

MRI USES THE INTERACTION OF
MAGNETIC MOMENTS WITH
MAGNETIC FIELDS

Just as electric charges give off electric fields and are
affected by them, magnetic moments give off
magnetic fields and are affected by them. This will
turn out to be important since, as we'll see, we
ourselves can create magnetic fields and pick them
up using suitably constructed coils.

Bloch Ampere's
e eqns. ~ & law ~
magnetic magnetic current
moment field through coils
m B |
™~  dipole ¥ ™~ Faradays _7T
fields law

We've already noted that a moment will give off a

magnetic (dipole) field. We therefore have three

additional question we’'d like to address in this

lecture:

1. How do magnetic fields affect magnetic
moments? The answer to that will come in the

form of a set of equations known as the Bloch
Equations, which will have a surprisingly
simple solution.

2. How can we pick up magnetic fields using
coils? Here, the answer will be by a process
known as induction, by which time changing
magnetic fields induce a voltage — and hence a
current — in a coil of wire. The basic law of
induction is known as Faraday’s law.

3. How can we generate magnetic fields, thereby
affecting the evolution of magnetic moments?
The answer here will come in the form of
Ampere’s Law: current passed through a piece
of wire or a coil will generate a magnetic field.
The spatial distribution of the field will depend
on the wire’s shape, while its tme
characteristics will depend on the current as a
function of time.

Magnetic  Fields Cause  Magnetic
Moments to Precesss The Bloch
Equations

How do magnetic fields affect magnetic moments?
This is a question in basic electromagnetism, from
which we will merely borrow the answer: as long as
the wavelengths involved are long enough, which is
the case for MRI, then:

1. m feels a force given by F = m -V B.

2. m feels a torque given by 7 = m x B.
The force F turns out to be mostly negligible
in-vivo, even for high magnetic fields of 3-10 T as
found in human scanners. There are two reasons for
this: First, the nuclear magnetic moment is very
weak. Second, at the center of an MRI magnet, the
magnetic field B is very uniform and varies by very
little, so its spatial derivatives are small.

As for the torque, we have:

dm ds

an _ A5 < B
. g TTom

This equation is known as the Bloch Equation
(BE). It is a vector equation and, therefore, actually
three separate equations:

my, = fY(msz - m;B;z/)
mjl/ =7 m,tB:I: - m:l:Bz

m, = r)/(mrl:By - mjljBﬁlf)



These are three coupled first order linear differential
equations. As far as differential equations they are
considered very easy from a numerical point of
view, but for a general time-dependent magnetic
field they have no analytical solution. However, if
the magnetic field is constant, their solution is quite
straightforward, and [ will quote here without
proof. It is so important and fundamental that I'll
put it in a textbox:

A spin m in a time-constant magnetic field B
will precess around the field B at an angular
velocity @=y|B| according to the left hand rule.

Curious readers are referred to the end of the
chapter for a proof. Let’s break this down slowly.
First, a precession is a motion by which m traces
out a cone around B, while keeping their angle 0

fixed:

In precession, the tip of m traces out the dashed
circle around B, while keeping 6 fixed.

The sense of the rotation is determined using the
left hand rule’: take your left hand and curl it with
the thumb pointing along the field B. The way your
fingers curl will tell you in which sense the
magnetization is executing its precession. Finally,
the angular velocity of the precession is fixed and
given by w=y|B| (a negative y will reverse the sense
of the rotation).

Since precession is really just a rotation of m
about B, we can describe it mathematically using

3 A lot of practitioners make the mistake of using a right
hand rule. This is incompatible with the Bloch equations,
and if you think otherwise, please go ahead and solve
them analytically for the simple case of a constant
magnetic field B pointing along the z-axis and see for
yourself.

4 Often, you will forget where the minus sign should
appear in a rotation matrix: on the sine term on the first

rotations. For example, if B is pointing along the
z-axis, then m will simply rotate about the z-axis. A
left-handed rotation matrix about z by an angle o

is*:

cos(a) sin(a) O
R,(a) = (—sin(a) cos(a) 0)
0 0 1

For a constant field, a=mt=yBt. If at time =0 m
points along the x-axis,

1
mt=0 =mgy = <0>;
0

then, for times 0,

mt =R yBt m,
cos Bt sinyBt 0 1
= (—sin ~vBt  cos yBt 0) <0>
0 0 1 0
cos(yBt)
= ( sin(’th))
0

Conceptually, any non-constant magnetic field
B(t) can be broken down into very short time
segments, Ot. For short enough segments, B will be
constant in each segment and we can predict its
effect as a precession by some small amount around
a fixed axis (which might change its orientation
between time segments). Practically this might
prove difficult for most cases, and will require a
numerical solution.

Spins Can Be Manipulated With
Magnetic Fields: Ampere’s Law

An MRI machine is basically just a collection of
coils. We current is passed through a coil it
generates a magnetic field, and it is through these
magnetic fields that we control the nuclear magnetic

or second row? Here’s a quick trick: The first column of
the matrix is the result of rotation a vector along x by an

angle a. Set a =% for simplicity. For a left handed

rotation, such a 90-degree rotation should take x into —y,
or (1,0,0) = (0,—1,0). This holds if only if the minus

sign appears on the sine term on the second row.



moments and produce an image. There are three
major coil groups in the magnet:

Main magnet coil (A), gradient coil (B) and body
(RF) coil (C) inside a typical MRI scanner.

Ampere’s law is also sometimes called Biot-Savart’s
law in some magnetism textbooks, but these refer to
the same thing.

Ampere’s law can be used to calculate the
magnetic field generated by a current through a
conductor. Three simple examples worth
remembering are:

1. The magnetic field by a straight wire

carrying currnet, which “goes around the
ol §
2nr

2. The magnetic field inside an infinitely

wire” and decays off as ~ %, B(r) =

long solenoid carrying current 1 and
having n turns per unit length: B = unliz,
where z is the axis of the solenoid
(independent of the radius and position in
the solenoid).

3. The magnetic field along the axis of a loop
of radius r carrying current I, at a height z
relative to the plane of the loop (set at

2
=0): B =t_TL 3

=7
2 (z22412)3/2
particular, at the center of the loop:

B(2) = ‘;—"’2

In

Infinite wire  Infinite solenoid Loop

Note that the magnetic field created is always
proportional to the current. This is a natural
consequence of the linearity of electromagnetism.

MRI-GENERATED FIELDS

The Main Field

A large cylindrical coil is wound along the patient’s
body. This coil is cooled with liquid helium and is
superconducting, and can therefore carry large
amounts of current without melting. Clinical
scanners go up to 3 Tesla, which is about 60,000
times the Earth’s magnetic field, which is 0.5 Gauss
(1 T = 10* G). However, research scanners have
already surpassed 10 T, although these are very
expensive to build. The main field is usually called
By and its direction is taken to coincide with the z-

0
Boz(o).
BO

Number Time. For a clinical MRI scanner,
Be=3T. A proton nucleus (y=2m-42.57
kHz/mT) will precess at a frequency of
v=yB, /27 =127 MHz, while a carbon
nucleus (y=21-10.705 kHz/mT) will precess at
about v =yB; /27 =32 MHz about the main
By field. This precession frequency is called the
Larmor Frequency.

axis:

The RF coils
The radiofrequency (RF) coils are capable of
generating arbitrarily shaped, albeit weak (around

10 puT at most) field at the radiofrequency range.

More precisely:
Bppt cos(¢>RF t )
Brpt = | Bpp t sin(éppt) |-
0

We can shape the amplitude, Bre(t), and the phase,
Ore(t), and create in theory any shape, although
modern hardware limits our abilities somewhat (as

dee

noted earlier, peak Bre(t) is around 10 uT, and =

~radiofrequency range, usually tens or hundreds of

MHz).



The Gradient Coils

The gradient coils generate a linear, spatially
varying magnetic field. So far, the RF and main
fields have been spatially homogeneous, at least
ideally. It is the gradient field that will enable us to
image the sample. How precisely that will happen
remains to be seen. For now, it suffices that we write

In all cases the gradient field superimposes a field
pointing along the z-axis!

We can also turn on several gradient coils at
once, generating a field which is a linear
combination of the individual fields. For example,
if we turn on both the x- and z-gradient fields at
equal magnitude, the field will become

down the general shape of the gradient field:

0
Bg'rad T,t = ( O >.
Gt -r

Note we can “shape” the gradient field by shaping

G 0
G:<o), Beff:< 0 )
G G(x+2)

This is a linearly increasing field along an axis
pointing along the direction of G:

G(t), by shaping the current passing through the

gradient coils. However, they are built to always be Mixed gradient: G=(G,0,G)

0
Bgm‘d = ( 0 )
G- (x+2)

linear in position, r.

Number Time. The maximal gradient field
strength is on the order of 10 mT/m, meaning
over the human head (- 0.2 m) one can create
z-field of

an additional about

10:0.2 mT -~ 1 mT.

It is important to understand visually what sort of
fields the different gradient coils generate. The
following illustration focuses on the case of a

X Putting It All Together
constant gradient:
The general, combined laboratory-generated
0 magnetic field felt by a microscopic spin is
i? therefore:
LB
Ak
4 h
;'.t ' Brit =By+Bppt + By, rt
F: I i II \ Bpp t cos(¢pp t)
| | T .
1 i Bppt sm(qﬁRF t )
I By,+Gt -r
! : 1 Il.
LA
.
Microscopic Fields
No gradient z-gradient x-gradient The magnetic moments themselves create magnetic
G=0 G=0Gz G =Gx

fields which affect each other. These will be treated

in a short while.

0
B grad — 0
0

Effective field in the rotating frame for the cases of no

0 0
Bm‘a(l = 0 Bm'n(l = ( 0 >
G-z G-z

gradient (left), z-gradient (middle) and x-gradient (right).



MRI Happens In The Near Field

It is very important to keep in mind that almost all
of the phenomena we will discuss in this course
happen in the near field. This is a term used to
describe distances that are small compared to the
wavelengths involved. In general, any oscillating
moment in free space with an angular frequency
o=21v would create electromagnetic waves with a
wavelength

1=L
v

In a vacuum we have ¢=~3-10°2, and for a

sec 2

hydrogen at 3T we have v =4B ~127 MHz ,
implying

A=24m.

Detection at distances << A are said to be in the near
field, which is precisely the case with MR, in which
the coils are placed as closely as possible to the
subject.

The consequences of operating in the near field
are subde. For example, we've assumed a magnetic
moment creates a dipolar magnetic field B(r) which
changes immediately when we rotate the moment.
This neglects the fact that field changes propagate
at the speed of light (in a vacuum), which is
permissible in the near field.

B(r’t):Z_;3(m(t)~f3)f—m(t)

The speed of light through a medium such as
human tissue differs from that in vacuum, and is
given by

noen,

where c is the speed of light in vacuum, n the index
of refraction, and &, . the (frequency dependent)
relative permittivity and permeability of the
medium. This makes wavelengths shorter and the
near-field criterion more difficult to fulfill:

c c

ﬂ,:—:

o vieu,

For clinical field strengths (1.5 T and 3 T) this

remains a reasonable-to-excellent approximation,

depending on tissue type, but for ultra high field
imaging (7 T and above) this assumption breaks
down and correspondingly artifacts can be seen in
the image. The table below shows some
approximate values for these quantities at 1.5, 3 and
7 Tesla.

It should be noted that p is not truly unity but
very close, such that \/; =1 for all practical

purposes. The true value of p, however cannot be
neglected when calculating susceptibility artifacts
(which we will not take upon ourselves in this
course), since magnetic resonance is very sensitive to
even small distortions in the main magnetic field.

Penetration Depth of RF Radiation

Another effect that must be taken into account is
the conductance of the body's tissues, 0. It is quite
amusing that conductivity, o, is measured in units
of Siemens/meter (in SI). The Siemens unit is called
after the German scientist Ernst Werner Von
Siemens, who also founded the Siemens company
which today is a leading manufacturer of MRI
scanners.

1

1 Siemens (S) = Ohm
m

The electrical conductance tends to nonlinearly
increase with increasing frequency, and so will be
larger for the RF fields applied at 7T (300 MHz for
protons) than 3T (127 MHz for protons). Typical



Material | Conductance Relative Relative Field | Wavelength | Skin Depth
o (S/m) Permittivity | Permeability | (T) A (m) 4 (cm)
& U,
Vacuum 0 1 1 1.5 4.7 0
0 1 1 3 2.3 00
0 1 1 7 1.0 00
Grey 0.33 97 1 1.5 0.48 11
matter
0.33 74 1 3 0.27 8
0.33 60 1 0.13 5
White 0.33 68 1 1.5 0.57 11
matter
0.33 53 1 3 0.32 8
0.33 44 1 7.0 0.15 5
Blood 0.15 86 1 1.5 0.51 16
0.15 73 1 3 0.27 12
0.15 65 1 7 0.12 8
Fatc 0.04 6 1 1.5 1.92 31
0.04 5.9 1 3 0.97 22
0.04 5.6 1 7 0.43 15

conductance values for biological tissues range from
0.1-1.0 S/m. However, some materials, such as
bone, conduct poorly (o0 < 0.1), while the eyes
conduct very well o &~ 1 . The rough dependence
of conductivity and permittivity as a function of the
frequency of the external field is shown below’
(image courtesy of Dr. Rita Schmidt):

+++++
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Relative Permittivity (¢ )
Conductivity (S/m)
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100 1

104 108 108
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At low frequencies, ions flow freely without any
resistance from the surrounding medium. As the

5> Consult Prodan et. al., “The Dielectric Response of
Spherical Live Cells in Suspension: An Analytic
Solution”, Biophys J (2008) for a discussion on the low-
frequency response. Martinsen et. al. provide a more
comprehensive review in the Encyclopedia of Surface and
Colloid Science (2002), titled “Interface Phenomena and
Dielectric Properties of Biological Tissue” (p. 2643).

frequency increases, some charge accumulation is
observed on cell membranes. At even higher
frequencies associated with MRI, the external fields
induce random rotational motions in dipoles in
large proteins and, then, in smaller water molecules,
which provide a mechanism for conduction
(effectively, dipoles can be thought of as tiny wire
elements which can conduct current without
actually moving as a whole).

An electromagnetic field with frequency v will
get mostly absorbed in any conductor with
conductance 6 (in ohms-meter) after traveling for a
distance given by the skin depth®:

5= 1. _503

~
TVHo //1,,’,1/0-

meters

where 1, is the permittivity of the vacuum (Henry
is an SI unit of inductance):

H
fto ~ 1.256 x 106 Y
meter

Finally, the book “RF / Microwave Interaction with
Biological Tissues” by Vander Vorst et al (2006) also has
in-depth discussions of the various physical mechanisms.
¢ This expression is valid for most materials far away from
the so-called “plasma frequency”, which is far above the
radiofrequencies employed in MRI (which are in the
MHz-GHz range).



This means that as we apply alternating magnetic
fields to the human head, they will get attenuated
substantially within a distance given approximately
by the skin depth 0. This is because the alternating
magnetic field will create electric fields which will
move the free electrons inside the conductor and
“do work” — namely, transfer energy to the electrons
and as a result decay. The typical skin depth at 7T

is only a few centimeters!

SPIN DYNAMICS: WHAT ABOUT
SPIN ENSEMBLES?

In an MRI machine one cannot study single spins
or single molecules, due to the low sensitivity of
magnetic resonance. A typical voxel is - mm?, and
it often contains many many spins. MRI therefore
studies the properties of nuclear spins in bulk. So far
we've focused on the dynamics of a single spin, but
what happens when we have an ensemble of spins?
For example, if we have many water molecules — say,
in a glass of water — and this glass is placed in an
external, static By field?

kdaog%o’o
Ay

It is this problem that we address next. We will find
out two main insights: First, that the external

magnetic field polarizes the nuclear spins, and
creates a net macroscopic nuclear magnetic
moment; And, second, that the Brownian thermal
rotational motion of the molecules leads to
fluctuating magnetic fields which create relaxation
— that is, return the system to thermal equilibrium
if it is perturbed from it. This will lead us to
modifying the Bloch equations to include relaxation
in a phenomenological manner.

The Concept of Bulk Magnetization and
Magnetic Moment

Suppose you have N molecules in a volume V, each
having a magnetic moment m;. Recall that the

moments are all vectors, so we can imaging a vector
“attached” to each atom. In general, without the
large external field of the MRI machine, they would
all point in different directions:

Schematic representation

of an ensemble of %
microscopic magnetic

moments. Each circle

represents the magnetic ‘\CK é
moment of, say, a water

molecule %

The bulk magnetization M of the volume V is
defined as the (vector!) sum over all elements in the

volume:
N
p(buk) _ Zmi
i=1
It is M (ulk) that MRI studies. In the above
example, M) _0 because the spins cancel out
each other:

»"b\;ﬁ
‘w’g% — 0

A related concept is that of bulk magnetization per
unit volume, M(r), such that if we take a small
volume AV around the point r then M r AV =
M bulk .

We will use the capital lecters M, M®™ to denote
the macroscopic bulk magnetism properties, as



opposed to m which we will reserve for microscopic
moments.

What volume AV should we use? On the one

hand, we want enough spins in AV to make it
statistically meaningful — that is, we want the
variance of our fluctuations to be small as possible.
Put another way, we want M to vary smoothly if we
start shifting our volume of interest around.

Volume of Water Number of spins
Liter = 10° cm?® 105

cm’ 102

mm? 10"

pm? 101

(10 nm)? 104

nm? 10

So it seems anything smaller than a box with sides
10 nm is shaky.

On the other hand, is there an upper limit on
AV? A natural choice might be a voxel (- mm?), but
there is a lot of variance inside a voxel. Sometimes
to understand the signal originating from a single
voxel we need to think in terms of what happens
inside the voxel because there is a lot happening
inside that mm’. So, in general, we stick to the
smallest AV we can take (say, (10 nm)?).

From now on when we talk about the
magnetization vector we will take it to mean the
bulk (macroscopic) magnetization vector per unit
volume, unless specifically noted otherwise. At
times [ will remark how the macroscopic picture ties
in with the microscopic one.

At Thermal Equilibrium, The
Macroscopic  Magnetic Moment is
Parallel to the Main (B,) Field

If you take a compass, which is nothing more than
a magnetized iron needle, having a magnetic
moment itself, it will align itself along the earth’s
magnetic field. This illustrates an important point
of interest which we’ll make use of: magnetic
moments tend to align themselves along the
magnetic field they are in when in equilibrium, in
which they minimize the moment’s energy:

EFE=—-—m -B=-m-B-cos 6

where 0 is the angle between m and B. This

phenomena is kIlOWH as paramagnetism.

The energy E is at its minimum when m and B
are parallel, and maximal when they are parallel:

Magnetic
Magnetic m(jtems
field ~N
—)
B E=mB E=0 E=-mB

A fundamental principle of statistical mechanics
states that systems tend to minimize their energy,
which explains why the compass needle aligns
along B. However, one should be mindful that
whether or not a macroscopic magnetic moment
will actually align is dependent on competing
interactions. For example, thermal motion might
tend to randomize a magnetic moment’s direction.
Question: why do microscopic spins precess about
the magnetic field, instead of aligning along it?
Answer: Paramagnetism is an intrinsically ensemble
phenomenon: a single spin cannot “align itself”
along the external static magnetic field, because it
has no mechanism by which to give away its energy
(and therefore change 6). Instead, a single spin in
vacuum would keep precessing around B forever.
Only by coupling itself to the fluctuating time-
dependent magnetic fields created by other spins
around it can it relax over time.

Upon the application of an external field, the spins
tend to align along the field — although thermal
motion will prevent them from doing so
completely. A “snapshot” of the spins in the
presence of an external field might look like this:

M(bu[k}



Calculating the
Equilibrium Bulk Magnetic Moment

Paramagnetic

We now come to the very important problem of
calculating the bulk magnetic moment of a sample
placed in a constant magnetic field (such as the 3
Tesla field of an MRI scanner) at thermal
equilibrium. First, by symmetry, we expect that, on
average, the microscopic magnetic moments will
not have any orientation preference in the transverse
(xy) plane, perpendicular to the main By field:
(m,) = (m,) =0 at thermal equilibrium. This
means we need to calculate (m_). To this end, we
will need a licde bit of statistical physics and
quantum mechanics. We will solve this for a
spin-1/2 nuclei ("H, ®C, *'P and most in-vivo
relevant nuclei), and refer the reader to the literature
for more complex derivations.

The z-component of the magnetization can
assume several orientations, which we can
parametrize by 6, the angle of m with the external
By field. Each such orientation has an energy
associated with it:

YhB,

Ef =—m-B,=— cos 6

wherem = 77]1 is the size of the microscopic nuclear

magnetic moment.

Magnitude: :‘2ﬁ
h
m,(0) = %cos(é’) 9 m/

y

Probability theory tells us that the average value of
a quantity is given by the mean over all possible
values, weighted by the probability of each value:

(m,)=>Y_pOm, 0
0
:Zpe <ﬁ>c059
7 2

The summation extends over all possible angles 6 of
the magnetization (basically, from —7 to +m). At
thermal equilibrium, the probability of the system

being in a state with energy E is given by
Bolztmann's distribution:

_E

PrE =—¢e kT

N~

where Z a normalizing factor, called the partition
function, given by:

Z=e B/ 4 4o BT

where the system has N states having energies
Ei,....En. The quantum mechanics we'll need says
we only need to take into account what’s known as
the eigenstates of the system; in our case, only the
parallel and antiparallel orientations of m need to be
taken into account:

h hB,

6=0° m =1 B =—1020
2 2

R ~h vyhB,

6 =180 m, = Y E, :72

With this we have everything we need to calculate
(m):

(m,)=ptm +plm
First, we'll make a simple approximation: The
energies associated with nuclear magnetism are
much smaller than the thermal energy kT at room

temperature:

B,

4x107%5J at B, =3T
KT ~ 4 x1072'J at T = 300K

which means we can approximate:

-0 -30-5)

We can plug these quantities back into our
expression for (m ), simplify and obtain:
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_ 7°h" B,
(me) = —er
(at high temperatures)

Adding up N such nuclear spins we obtain the mean
z-component of the bulk magnetization at thermal
equilibrium, Mp:

N~2h2B,
M, =N =—~L___ U
0 <mz> 4kT
Equilibrium bulk macroscopic
magnetic moment for spin—¥2 nucleus

Our assumption of non-interacting spins is a bit
suspect, since the nuclear spins “talk” via dipolar
coupling, but one can prove using quantum
mechanics this holds even in the presence of dipolar
and other interactions.

Looking at the above equation, we can write it
as:

M, =N |— =M -
0 ( 2 2 kT max ) kT

=N (%) is the maximal
moment you can get by aligning all of the spins

completely along Bo. The factor (g;?i’) represents

The quantity M,

max

the actual fraction of spins that are, on average
(statistically) aligned along Bo.

Number Time. 1 mL of water will weigh about
1 gram. With a molecular weight of about 18
gr/mol, it has about N=3-10?' hydrogen atoms
(and 2N proton nuclear spins). At room
temperature (kT-4-10%' m*kg-s") and a field of
Bo=3 Tesla, we have (y=21-42.576 kHz/mT),

Moz 1 0'8 ]/T
Contrast this with the maximal moment:
My =~ 1073 J/T

which is about 5 orders of magnitude larger.
This is a direct consequence of the fact that, due
to thermal fluctuations and the smallness of the
nuclear magnetic interaction, on average only
about 1 spin in 100,000 align along the main
field in a typical 3T MRI magnet
Mathematically,

The above equation gives the macroscopic magnetic
moment for N spins, but one could equally talk
about magnetic moment per unit volume by
dividing both sides by the volume, V. Then N
would turn into the number density of spins, also
known as the proton density when dealing with
protons (number of nuclei per unit volume):

PD- ~h 2B,

M =
o 4akT

Spins Are Subjected To Microscopic
Fluctuating Magnetic Fields Due To

Their Thermal Motion, Which Induce
Thermal Relaxation

Each microscopic nuclear magnetic moment m in
our sample “sees” a magnetic field made up of two
components: the macroscopic field generated by the
coils in the lab, and the microscopic fields given off
by its surroundings. For example, the dipolar field
generated by one nuclear spin in a molecule will be
felt by other nuclear spins in the same molecule.



Shown here is the magnetic field (red arrow) felt by one
spin due to the dipolar field of the other spin in an H,O
molecule.

I¢’s very important to realize that the orientation of
the nuclear magnetic moment has nothing to do
with the molecular orientation: if you rotate the
molecule by 90°, the nuclear moment will not
change, since it’s not related to the nuclear charge
or mass distribution; it “lives” in its own space and
“talks” to the environment only through the
magnetic fields it feels and emits:

Upon rotation of the molecule, the spins (black arrows)
do not change their orientation. Consequently, the spin
feels a different magnetic field, in both magnitude and
direction.

Since most of the water molecules in the body are
in the liquid state in the extra and intracellular
matrices’ —All molecules rotate and tumble around
very rapidly. A small water molecule might perform
a rotation on picosecond timescales, while larger
molecules would rotate more slowly. This molecular
rotation leads, by the arguments just laid out, to
fluctuating  intramolecular and intermolecular
dipolar microscopic fields.

7 This is actually not entirely correct, since water
molecules often get “stuck” to cell membranes or

The main effect of the fluctuating fields is to
induce thermal relaxation: to bring the spins to
a state of thermal equilibrium and maintain it.
This is analogous to “friction” that dissipates
energy in mechanical systems.

If the spins are perturbed from equilibrium — say,
by the application of external magnetic fields — the
microscopic fluctuations will work to bring them
eventually back to thermal equilibrium.

Fluctuating Microscopic Fields Lead To
Decoherence (T,) And Return to Thermal
Equilibrium (T})

The magnetic field felt by a microscopic nuclear
magnetic moment can be subdivided into two parts,
macroscopic and microscopic:

Bt =B t +B t

micro macro

where the macroscopic fields are those generated by
the laboratory coils and controlled by the sciendst,
and the microscopic fields are those fluctuating
fields created by other spins in the molecule,
electrons, and so forth. Consequently, the Bloch
equations which describe the spin’s precession
become:

dm

s ym x B=ym x B

macro 1 + ’\/m X Bfllj(‘7'(?(1')
Now assume we have N magnetic moments, my,
m, ..., my, each experiencing its own unique
microscopic field, but all experiencing the same
macroscopic one:

% = yml XBman‘o (t)-‘ryml XBSZ?(TB (t)
dzz =rm, XBmarw (l')"r ym, XB(mzt)rm (l')
dm )
7 = ymN XBmm'm (t)+)/mN XBmlrm (t)

confined in tight spaces. We will look more into this in
later lectures.



Tissue Type | Nuc. | Mol. 15T 3T 7T
T] Tz Tl TZ Tl TZ

Gray Matter® 'H H.O 1188 £ 69 95+8 1820+ 114 | 997 21321103

White Matter® 'H HO | 656+ 16 72t 1084 + 45 69%3 1220 + 36

Cerebrospinal H H.O | 4070 + 65 4425 + 137

Fluid®

Blood® 'H H.O | 1540 +£23 290£30 | 19321385 275+£50 | 2587 £283

Kidney Cortex* | 'H H.O | 966+ 58 87 +4 1142+ 154 | 76+ 4

Kidney 'H H.O 1412 +58 85+11 1545+ 142 | 81+8

Medula®

Liver? 'H HO | 586+ 39 46+ 80971 34+

Cartilage, 0° ¢ 'H H.O | 1024+ 70 30 1168 £ 18 27+3

Cartilage, 55°¢ | 'H H.O | 1038 £67 44 +5 1156 £ 10 43 +

Bone marrow | 'H H:O | 549+52 49 + 586+ 73 49 +

(L4 vertebra)®

Prostate? 'H H2O | 1317 +85 88+ 0 1597 £ 42 74+4

Subcutaneous 'H Fat 343+ 37 58+4 382+13 68 +4

fat*

NAA CH; | 'H NAA | 1270 +50 1470 + 80 269+7

(GM)*

NAA CH; | 'H NAA | 1360 =60 1400 £ 150 | 3749

(WM)*

Typical T and T relaxation times from the literature, in milliseconds, in humans. The + sign indicates standard
deviation of the cohort examined. Note that variations may occur within a particular tissue (e.g. cortical vs. deep gray
matter), and that numbers provided from different papers might originate from different regions within the same tissue.
Also, some skepticism should be practiced when using values obtained for flowing/pulsating media, such as the
cerebrospinal fluid.
*  From: Bazelaire et. al., Radiology 230(3):652-659 (2004)
> T values at 1.5 T and 7 T taken from Rooney et. al., Magn. Reson. Med. 57:308-318 (2007).
T1, T2 values at 3 T taken from Rooney et. al., Magn. Reson. Med. 57:308-318 (2007) and Stanisz et. al., Magn
Reson Med 54:507-512 (2005).
¢ T, values at 3T taken from Kirov et. al, Magn. Reson. Med.
T values at 1.5T and 3T from Ethofer et. al., Magn Reson Med 50:1296-1301 (2003)
4 From: Stanisz et. al., Magn Reson Med 54:507-512 (2005).

60:790-795  (2008).

The last term on the RHS represents the effects of
We now sum over multiple microscopic spins: the fluctuating fields and is intractable really.
Physically speaking, these fluctuating magnetic

fields are the source of (1) decoherence (i.c. loss of

N dm N N
n (”)
; 4 4 Z:; m, xB,, (¢ )+7 Z m, xB (¢) signal) and (2) thermalization (return to thermal

n=1
equilibrium). Luckily, phenomenologically these
Since By is common to all summed terms, and effects can be respectively embodied by two

since the derivative of the sum equals the sum of the constants, T> and Ty, respectively, which can be

derivatives, we can substitute the microscopic integrated into the Bloch equations using simple

moments by the macroscopic one, M "Wk = terms:
N .

Zn: ,m,, and obtain: M,

M, = ’y(MyBZ — Msz) — ?

dM bulk bulk 2

— DULR A ]\4

dt WM X Bma,cro t M/I =7 J\IRB _ MBN —)

N Y z xr xr z T2

+ 7 Z m, X B'm”[r;r'o t ]\/It - ]\/IO

n=1

J\[/: = fY(J\/[:l:By - J\/[nyﬂ) - T
1



We have omitted the subscripts and superscripts
macro and bulk. Now the B that appears in our
equations is the macroscopic field generated by the
coils inside the MRI scanner and other macroscopic
sources of field variation.

Mo is the thermal equilibrium value of the
magnetization, as can be seen by turning “off” the
macroscopic RF and gradient fields, setting the time
derivatives to 0 (which must be the case at
equilibrium when macroscopic quantities do not
change) and solving:

M
(=

2 ( M, =0
| M, |
§oM,=—7r o4 M,=0
| 2 M. = M,
| M, — M, ' 0
(= T,

A table of some T and T; values has been compiled
above. We note that for most in-vivo tissues at
typical field strengths (1.5-3.0 Tesla), T of protons
in water is on the order of a second, while T3 is on
the order of 100 ms. Furthermore, T tends to
increase with increasing field strength, while T,
tends to decrease. The field-dependence of T; and
T, will await a further chapter which will discuss T}
and T as sources of contrast.

T, Leads To Decoherence

To gain a better understanding of the sort of effect
T, has on the spins, let us set the macroscopic
laboratory field to 0 and examine the time evolution
of the magnetization.

M,
M, = ——=2
£ T2
M,
M,=——"
Y T2
M, — M,
M,=-——2_"0
<~ Tl

One interesting this is that the transverse (x, y) and
longitudinal (z) components of the magnetization
become decoupled: M, does not feature in the
equations for My and M,, and M, and M, do not
appear in the equation for M,.

The equations for My and M, have simple

solutions:

ot
Mt =M, t=0e¢ T
ot
M,t =M,t=0e f2

This means that, whatever magnetization we start
out with, it will decay with a time constant T to
zero:

Mx
A

M(t=0) 1

M (e 0)

T2

This is called decoherence, and represents the
physical fact that, unless something specific is done,
the spins will point in all possible directions
perpendicular to the MRDs static By field, since
there is no reason — energetic preference — for them
to align in any single particular direction. The time
T, can be thought of the time it takes My (or My) to
drop to 1/e-37% of its initial value.

T1 Leads To Thermal Equilibrium

At thermal equilibrium the spins align themselves
along the external By field. This is brought about by
Ti relaxation. The solution to the equation
involving M, is:

M.t =M 0e7+(1—e)M,

We see that, for t>>T1,

M, (t>>T)=M,.
Thus, whatever longitudinal magnetization we start
out from at t=0, it will converge back to its thermal
equilibrium value Mo:



Mo

How the Magnetization Evolves in the
Absence of Radiofrequency Fields:
Precession + Thermal Relaxation

Next, we'd like to look at the slightly more general
case in which the spins are subjected to the main
(Bo) field and a potential constant field gradient, but
not to a radiofrequency field (we’ll deal with that
later on). In this case,

0 0 0
Bmam‘o r = < 0 ) + ( 0 > = ( 0 >
By G-r AB(r)

The macroscopic Bloch equations become

dM, M,

€T — ,y]\/[’ AB r — €T

dt v T,
TS VN P
g~ eET T T

dM, M, — M,

dt T

We immediately see that the equation for the
z-component, M,, is the same. What changed were
the equations for M, and My, in two ways:

1. Each now has an additional term.

2. The term is dependent on position. This is not
a problem, because we can fix r and just solve
for each position r independently.

3. The equations for My and M, are now mixed,
making  their solution  slightly more
complicated: the equation for M, features M,
and vice versa.

There is a useful trick for solving both of these

equations simultaneously, which rests on defining a

new complex quantity, called the transverse

magnetization:

Ml;y = A/Il + Z]\{IU

This is a complex number. We can think of it as a
2D “vector” in the real-imaginary plane: Its real
component is given by M, and its imaginary
component by M.

On the one hand,
dM, dM, d(M,+iM,) dM,,
dt dt dt dt

On the other hand, we can use the x- and y-
components of the Bloch equations to substitute for
the left hand side of the above expression:

dM, —dM, M,
€T 4 — ]V[ A B _ T
a ' dt (V y= 2T T2>

M,
+i <f'y]\4,,_AB r — ")
£ CZ—'2

, M,,
=—17AB r M,, — T
2

. 1
=— (zfyAB r — E) M,,
This looks like a much simpler differential equation,
of the form % = —ay(t), for which the solution is
yt =y 0 e . Wesolve by analogy:

) -t
M, t =M, 0e 28Tl T

By taking the real and imaginary components of this

equation, we can recover M\(t) and My(t) (hint:

recall M, (0) is complex as well). However, it’s often

much easier to think about things in the complex

plane:

1. The factor e 2B Tt rotates the complex
vector My,(t) with an angular velocity w r =

YAB(T).

2. The factor 67%2 “eats up” the size of My/(1),
causing it to diminish exponentally with a
time constant T5.

So, what we’ve shown is that, for a time-constant

(but possible spatially heterogeneous) external

magnetic field along the z-axis, the motion of the

transverse magnetization is a “sum” of two motions:

(1) Precession with angular frequency AB(r) +

(2) Decay with time constant T.

Putting all of this together, we can say the following:



In the presence of a time-constant macroscopic
magnetic field along the z-axis, the
magnetization precesses about the z-axis and
slowly decays with time constant T in the xy
plane and time constant T along the z-axis.

For example, if we start at an angle 6 to the z-axis
and pointing along the x-axis, and if T; is shorter
considerably than T, (as is often the case in-vivo):

t< Ty, T, Toxt<T, T,<t

M,

Left: Initially, the spin precesses around the external field.
Middle: As M precesses, T2 “eats up” the transverse (xy)
magnetization. T1 has negligible effect on the effect at
times t<<T1. Right: Eventually, T1 relaxation returns the
z-component of M to its equilibrium value, Mo.

As a corollary, this example illustrates that:

The size of the macroscopic (bulk)
magnetization is not conserved over time.

Before moving on, we tackle one last complication
and allow the gradient fields to vary with time (as
they can):

0 0
Bma,mw T,t = ( 0 > + < 0 >
B, t)-r

We can repeat our method of solution from above
step-by-step, defining the transverse magnetization
and arriving at the same equation for M,,, with the
only difference being that AB 7,t is now a
function of time:

dM,, 1
Y= — (iyAB vt — ) M,
e (esmne )

This cannot be directly integrated, for the same
reason that the solution of’(]]’%"f{ =—atyt isnot
yt =y 0 e " Instead, we must break up the
time axis into N small chunks of length At, with
total length t = NAt, during each of which a(t) is
approximately constant. Then the solution in each
interval is

yt+ At =e @PAy ¢t

The full solution is obtained by concatenating the
short-time solutions:

y At = y 0e @ 0 At
y 20t =y At e @ At AL
=y 0 e—la At +a 0)At
y 3At =y 2At ¢ @ 2At At
a 20t +a At +a 0 )At

=y 0 €7<
This can be continued by induction, with the sum

turning into an integral as At—0:

yt = effuta t dt’y 0

We can apply the same reasoning when AB is time
dependent and write:

M, t

Ty

) ' / ’ f
=M,, 0 exp (ﬂy[ AB r,t’ dt ) exp <,i>

This equation describes the time evolution of the
transverse magnetization under the action of a time-
varying gradient in the absence of an external RF
field. It is one of the most important equations in
MRI, and one we will come back to many times
throughout the course. Sometimes, we will write

YAB r,t = Aw r,t’

such that

! t
=M,, 0 exp (—Z/ Aw 7, t’ dt’) exp (_Tz)
0

As mentioned above, our previous solution for M,

still holds:



_t _t
M,t =M, 0Oe T1—|—<1—e Tl)MU

By, Inhomogeneity Leads To Additional
Transverse Decay (T")

An MRI magnet is built to yield a homogeneous
field over a volume roughly the size of the human
head. The ability of NMR and MRI to discern
changes of ~Hz to the proton frequency means
severe constraints are placed on the homogeneity.
Indeed, a change of a single Hz would correspond
to a change in the main field given by

¥AB = 1 Hz
or

AB ~ 0.02 uT.
This is

2—': ~6-107°

This is an incredibly difficult demand on the
hardware: we need it to be homogeneous to about

0.01 ppm over a head-sized volume! The main coil's
imperfections make it impossible to achieve. To
approximate this requirement, special passive shims
- pieces of iron - are added to the magnet to "shape”
the main field.

Even if a perfect magnet is constructed, once we
put in a sample, be it a human or an inanimate
object, the main field will get distorted and its
homogeneity would get ruined. Microscopically,
human tissue is diamagnetic. This means an
external field such as By will induce magnetic
moments in matter (of course the moments will
induce a magnetic field which will create further
moments which will induce further fields ... so the
full solution must be self-consistent). The
additional moment-induced field distorts the main
field. The phenomenon is known as magnetic
susceptibility. Susceptibility occurs on both a
microscopic  (cellular and  sub-cellular) and
macroscopic scales.

The effect of these inhomogeneities can be quite
intricate, but they always lead to a decay of the
signal. We'll delve into specific models later on, but
for now we'll just state that on a small scale - on the

order of a voxel or smaller - it can usually be

modeled by swapping T by a shorter time, T5*:

1 1

[
L, I;

In almost all realistic cases, T>* can be written down
as a sum of two contributions: the microscopic
decay and decay effects due to inhomogeneity:

1 1 1
1, 1 T,
-~
microscopic, due
to thermal motion
of water molecules
+ S
’
T2
—

meso/microscopic,
due to spatial variations
in the magnetic field



